ELLIPTIC PSEUDO-DIFFERENTIAL EQUATIONS AND SOBOLEV SPACES OVER p-ADIC FIELDS

نویسنده

  • J. J. RODRÍGUEZ-VEGA
چکیده

We study the solutions of equations of type f(D,α)u = v, where f(D,α) is a p-adic pseudo-differential operator. If v is a Bruhat-Schwartz function, then there exists a distribution Eα, a fundamental solution, such that u = Eα ∗ v is a solution. However, it is unknown to which function space Eα ∗ v belongs. In this paper, we show that if f(D,α) is an elliptic operator, then u = Eα ∗ v belongs to a certain Sobolev space. Furthermore, we give conditions for the continuity and uniqueness of u. By modifying the Sobolev norm, we can establish that f(D,α) gives an isomorphism between certain Sobolev spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Sobolev Spaces and Degenerate Elliptic Equations

In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...

متن کامل

Part 1: Elliptic Equations

1. Elliptic Differential Operators 1 1.1. Partial differential operators 1 1.2. Sobolev spaces and Hölder spaces 10 1.3. Apriori estimates and elliptic regularity 20 1.4. Elliptic operators on compact manifolds 28 2. Non-linear Elliptic Equations 35 2.1. Banach manifolds and Fredholm operators 35 2.2. Moduli space of nonlinear elliptic equations 39 2.3. The Sard-Smale theorem and transversality...

متن کامل

NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochast...

متن کامل

Elliptic Differential Equations with Measurable Coefficients

We prove the unique solvability of second order elliptic equations in non-divergence form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable and VMO in other variables. From this result, we obtain the weak uniqueness of the martingale problem associated with the elliptic equations.

متن کامل

Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces

In the present paper we study the Ulam-Hyers stability of some elliptic partial differential equations on bounded domains with Lipschitz boundary. We use direct techniques and also some abstract methods of Picard operators. The novelty of our approach consists in the fact that we are working in Sobolev spaces and we do not need to know the explicit solutions of the problems or the Green functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009